152 COMPUTE

Apxril, 1981 Issue 11

Machine Language:

The Wonderful
Wedge

Jim Butterfield

Adding new commands to Basic scems an impossible
task at first glance. The Basic interpreter is frozen
forever in ROM chips, and unless you’re the adven-
turous type who can program your own EPROM
chips, it seems that there’s no way in.

It can be done. A small but important part of
the Basic interpreter is located in RAM memory. It's
written there during system initialization and is
available for you to change.

The subroutine is called CHRGET (Character
Get), and all 6502 Microsoft Basic implementations
use it. Every time the Basic interpreter wants to get a
character from the Basic statement it is executing, it
calls CHRGET.

Here's where you can find subroutine

CHRGET in some 6502 systems:

KIM - CO0 to D7 hexadecimal
SYM - GC to E3

AIM - BF to D6

OSsI - BC to D3

Apple - Blto CB

Early PET - C2to0 DY

PET/CBM - 70 to 87

Our description here will refer to the PET/CBM ver-
sion, Upgrade and subsequent ROMs.

How it works

Let's look at the CHRGET subroutine in detail.
0070 E6 77 CHRGET INC POINTER
0072 DO 02 BNE CHRGOT
0074 E6 78 INC POINTER + 1
Locations 77 and 78 contain the address of the last
Basic character obtained. The above coding bumps
the pointer to the next address, adjusting the high
order address if necessary.

0076 AD xx xx CHRGOT LDA xxxx

The address indicated with xxxx above normally
points at your Basic program or at a direct Basic
statement you have typed in. Note that the address
itself has been modified by CHRGET, above.

0079 C9 3A CMP #': sascii colon or higher?
007B BO 0A BCS EXIT iyes, exit subroutine
The above coding tests two things. If the new
character is a colon, meaning end of Basic statement,
we will exit with the Z flag set to one. If the new
character is higher than ASCII 8 (hex 39), we will
exit with the Carry flag set to one. The meaning of
these flags will be discussed in a moment.

007D C9 20 CMP # iia it a space?
007F FO EF BEQ CHRGET

;skip next instruction

variable address

We know that Basic ignores spaces; this is where it
happens. If we find a space, we go back and get
another character.

0081 38 SEC
0082 EF 30 SBC #§30
0084 38 SEC
0085 ES DO SBC #$D0

This seems to be a curious bit of coding: we subtract
256 from the A register, in two steps, which leaves it
with its original value! The point is this: if the A
register contains a value less than ASCII zero (30
hex), the Carry flag will be set to one; otherwise, it
will be cleared to zero. The Z flag, toe, will be af-
fected: it will be set if we have obtained a binary
ZE€ro.

0087 60 RTS

What the flags mean
The flags are often checked by the calling routines.
The Z flag will be set on if we have found an ASCIL
colon (end of statement) or a binary zero (end of
Basic line).

The Carry flag will be cleared to off if the
character is an ASCII numeric, zero to nine (30 to
39 hex); otherwise it will be set on.

How the subroutine Is called

CHRGET is called many times during the inter-
pretation of a Basic program or a direct statement. It
normally obtains data from the active program; but
it is also used to obtain information from DATA
staternents or keyboard input during READ or IN-
PUT activities. In such cases, the pointer at 77 and
78 is swapped out temporarily.

The Basic interpreter also frequently calls
CHRGOT (address 0076) to re-obtain and check a
previously obtained character.

From time to time, the pointer at 77 and 78 is
used as an indirect address by the interpreter; when
we start tampering with the coding of the subroutine,
we must be sure to leave the pointer intact in its
normal place.

Finally, there is a rare call that is made to the
subroutine at address 7D (Compare to space); it
doesn’t happen often, but we must watch for it.

Keep in mind that the subroutine does not affect
the X or Y registers.

Wedging it in

To fit in the extra features, we must ‘‘patch’’ the
CHRGET program and connect it to our own code.
The patch will destroy some of the existing code, of
course, and we must carefully replace it.

There are two places we can insert the patch: at
the beginning of CHRGET, or a little distance past
CHRGOT. The first location will go into acticn only
when a new character is called up by the interpreter.
The second location would be invoked more often,
since CHRGOT is called to recheck a previously
obtained character.

Apiil. 961, lssue 1. COMPUTE!

Let's use the first location; and let’s put in a
simple do-nothing wedge for starters. Call up the
Machine Language Monitor and sct up the following
memory locations as shown:

027A: E6 77 DO 02 E6 78 4C

0282: 76 00 xx xx XX XX XX
The first six locations exactly match the coding at
CHRGET. Now we’ll put in the patch with:

0070: 4C 7A 02 02 E6 78 AD xx
Leave the Machine Language Monitor and play with
Basic for a moment. Everything still works. It looks
like we have found a way to penetrate Basic...but
we haven’t done anything yet.

A tiny example

Let’s write a very small wedge to recognize an “‘@”’
sign and break to the monitor if it is seen. Not much
in the way of power, but it will show how the tech-
nique is used. We'll continue to use the patch at
0070.

To get the character we plan to analyze, we'll
have to use indirect, indexed addressing. The pointer
is of course at 77 and 78, and we must set the Y
register to zero. Since we must not affect the Y
register, we must first save its contents, and restore
them before we finish.

So our coding will follow the following pattern:
STY WORK, to save Y; LDY #0, LDA
(POINTER), Y to get the character; LDY WORK,
to restore Y; CMP #@, to check for the @
character in A; BEQ) BREAK if we find it; and JMP
CHRGOT to return if not. BREAK will have the
BRK instruction to go to the Monitor. Let’s do it.

027A: E6 77 D0 02 E6 78 BC AOD

0282: 02 A0 00 B1 77 AC A0 02

028A: C9 40 F0O 03 4C 76 00 00
We have arbitrarily picked address 02A0 as our Y
Save location. Now the patch to implement the
wedge:

0070: 4C 7A 02 xx xx xx AD =xx
Return to Basic. Try statements which do not
contain the @ sign, and others which do.

Final remarks

You're ready to try your hand at more ambitious
wedge inserts. Be careful: remember to save X and
Y if you use them, and restore them later. Keep in
mind that the larger your wedge program, the slower
Basic will run. Look for quick tests: for example,
many wedge programs will exit instantly unless the
statement was input as a Direct command. . . this can
save a lot of time on a running program.

Watch that you don’t conflict with other wedge
programs, like Trace, Toolkit, or the DOS wedge
program. It takes a lot of careful coding; but the
results can be dramatic.

